

Natural Polymers

- Cracking the Code, if we can

Transitioning to a Sustainable, Circular Economy for Plastics Workshop

U.S. Department of Energy's (DOE) Bioenergy Technologies Office (BETO) &

Advanced Materials and Manufacturing Technologies Office (AMMTO)

Dual Problems of Plastic

Pollution

Carbon Emission

GHG emissions from the production, recycling and disposal of plastics could account for 19% of Paris Climate agreement's total allowable emissions in 2040 – IISD

Origin of life Problem (feedstock & Production)

CPGs' Needs on Sustainable Materials

- Address consumers' unmet needs/demands
 Products or services to make people's life better
- Meet the expected functionalities mechanical, barrier, aesthetics, etc
- Availability, stable and secured supply
 Minimum negative impact to the business
- Cost-effectiveness
 Life cycle consideration
- Social responsibility
 Driving social impact, preserving our environment.

Current Solutions Let's fix the problems of Plastics and make better Synthetic polymers Plastics (plastics) were not originally designed with end-of-life in mind, nor Recycling with the resource scarcity Current circular economy of plastics - try to close the loop, mechanical or chemical **Biobased** recyclings Biodegradable

Currently 9% plastics are recycled

Cost is high

No collection infrastructure

A Better Loop - Carbon Loop

Amazing Natural Polymers

Natural Ester Chain - PHA

Biodegradability in different environments

	Marine Biodegradable	Fresh Water Biodegradable	Soil Biodegradable	Home Compostable	Landfill Biodegradable	Anaerobically Digestable	Industrially Compostable
PHA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Ø	\bigcirc
PBSA			\odot	\bigcirc			\odot
PBAT			\bigcirc	\bigcirc			\bigcirc
PLA							\bigcirc

Backbones

 $C = CH_2$ H_3C $C = CH_2$ H

Chemical structure of cis-polyisoprene, the main constituent of natural rubber.

Natural rubber is susceptible to degradation by a wide range of bacteria.

Synthetic polyolefins: PE or PP, etc.

Not degradable

Natural Polymer Definition

Natural polymers are polymers

- Whose backbones are created by nature
- Can degrade in any natural environment and
- Their large-scale production and degradation after end-of-life do not negatively impact the environment.
- Meanwhile, natural polymers emit a minimum amount of greenhouse gas during their life cycle.
- In addition, if they are collected, natural polymers can also be recycled, (e.g., paper).

Change the Mindset

- Investment
- Knowledge
- Creativity
- Boldness
- Luck

Emerging Natural Polymers as Industrial Mass Produced Materials

Turn "S" to "N", Plastic ->

Plantic's primary feedstock is a natural corn starch

